Vuosi 2016 alkoi näyttävällä, joskin valtakunnan tasolla melko vähämerkityksisellä Suomen ennätyksellä. Vuorokauden lumikertymäennätys murskautui Merikarvialla hulppealla marginaalilla. Ilmatieteen laitoksen tilastojen mukaan edeltävät kärkilukemat olivat puolen metrin tienoilla, kun Merikarvialla lunta rymähti taivaalta mojovat 73 cm. Kuten alla oleva tutkasadekertymäkuva osoittaa, runsaan lumisateen alue oli hyvin pienikokoinen, mikä on tämäntapaisissa tilanteissa yleistä. Tapaus on meteorologisesti hyvin mielenkiintoinen ja seuraavassa pureudutaan sen yksityiskohtiin.
Säätutkalla mitattu sademääräkertymä 8.1.2016.
Merikarvian tapauksen taustalla oleva ilmiö on hyvin tunnettu ja kulkee nimellä lake effect snow. Kutsun tässä kirjoituksessa ilmiötä puoliviihteellisesti lumitykiksi. Kyse on yksinkertaisesti sanottuna tilanteesta, jossa kylmää ilmamassaa virtaa jäättömän vesialueen ylle. Vesialue toimii lämmön ja kosteuden lähteenä, minkä seurauksena kylmä ilmamassa alkaa muuntua. Lopputulos on vähitellen korkeutta kasvavia konvektiopilviä ja lopulta pieniä ja pippurisia lumikuuropilviä. Oheinen kuva selventää muuntumisprosessia.
Lumikuuropilvien muodostuminen kylmän ilmavirtauksen saapuessa jäättömälle vesialueelle. Lähde: UCAR/COMET
Meteorologisesti tarkasteltuna reunaehtoina toimivat samat kolme ainesosaa kuin kesäisille kuuropilville: alatroposfäärin kosteus, instabiilisuus sekä nosto. Ensimmäinen ainesosa on peräisin suurelta osin alustasta eli jäättömästä vesialueesta. Toinen ainesosa muovautuu ajan kanssa, kun kylmä ilmamassa lämpenee alustan vaikutuksesta. Näin lämpötilaero pintakerroksen ja 1-2 km korkeustason välillä kasvaa. Tyypillisesti tämän ilmakerroksen lämpötilavähete muuttuu lopulta kuiva-adiabaattiseksi. Kolmas ainesosa on lumitykkitilanteissa helposti saatavilla, koska monesti lämpötilavähete pyrkii vääntäytymään jopa yliadiabaattiseksi. Tästä seuraa spontaaneja nousevia ilmavirtauksia, jotka voivat toimia kuuropilvien ”alkioina”. Useasti läsnä voi olla syystä tai toisesta pintavirtausten tuulikonvergenssia (maatuuli tai rannikkokonvergenssi), joka helpottaa lumikuurojen syntyä. Tyypillisesti lumitykkien syntyyn ja voimakkuuteen mainitaan vaikuttavan myös pyyhkäisymatka sekä tuuliväänteen voimakkuus, joita käsitellään tarkemmin alla.
Edellä mainitut elementit kohtaavat jossain päin Itämerta useita kertoja joka talvi. Siinä mielessä 8.1.2016 tapahtumien ei pitäisi olla erityisen harvinaisia. Läheisempi tarkastelu osoittaa kuitenkin, että nyt koettu tilanne oli osin harvinaisilla mausteilla varustettu. Luettelossa mainitut mausteet ovat osittain vahvasti riippuvaisia toisistaan.
· Jäätön ja ”lämmin” merialue. Takana oli harvinaisen lämmin syksy ja alkutalvi, jonka seurauksena arktisten ilmamassojen sesonkikauteen ”päästiin” lähes jäättömässä tilanteessa. Tilanne mahdollisti pitkät pyyhkäisymatkat sekä voimakkaan lämmön ja kosteuden vuon alustasta ilmaan. Lisäksi rannikon suojana ei ollut jääpeitettä juuri lainkaan. Tämä mahdollisti kuuropilvien pääsyn maa-alueelle ilman heikkenemistä jääpeitteisellä vesialueella.
· Kylmä ilmamassa. Lumitykin tehoa säätelee muun muassa ilmamassan ja alustan lämpötilaero. Pohjois-Amerikan suurilla järvillä nyrkkisääntö on, että 850 hPa:n lämpötilan ja alustan lämpötilan ero pitäisi olla vähintään 13 astetta. Tässä tapauksessa eroa oli pyöreästi 20 astetta. Asetelma on Selkämerellä mahdollinen vain, jos arktinen ilmamassa ”vaivautuu” paikalle alkutalven aikana. Suotavaa myös on, että pohjalla on keskimääräistä lämpimämpi syystalvi.
· Sopivan heikko subsidenssi-inversio (ja suuri lumitykin korkeus). Tyypillisesti kylmä ilmamassa on erittäin stabiilisti kerrostunut ja saattaa sisältää pakkaskorkeapaineen aiheuttaman subsidenssi-inversion sekä tietysti myös voimakkaan pintainversion. Mikäli inversiot ovat erityisen vahvat, ilmamassan muuntuminen lumikuuroille otolliseksi kestää huomattavan kauan. Merikarvian tapauksessa muunnos ei ollut erityisen työläs. Alla oleva kuva osoittaa, että Jokioisten yöluotausta muokkaamalla lumikuurojen vähimmäiskorkeudeksi voisi arvioida reilut 2 km. Alempana olevasta numeerisen mallin ennusteluotauksesta voi saada vieläkin korkeamman arvion lumitykin korkeudelle, noin 3 km. Tämä on Suomen lumitykkitapauksissa huipputason lukema, kun tyypillisesti korkeudet liikkuvat haarukassa 1.5-2.5 km.
Jokioisten yöluotaus 9.1.2016 klo 02 Suomen aikaa. Luotauksen pintalämpötila ja kastepiste on muokattu vastaamaan keskimääräisiä olosuhteita Selkämerellä. Pinnasta nostetun ilmapaketin reitti näkyy luotausdiagrammilla violetilla viivalla.
· Riittävästi pyyhkäisymatkaa (ja sopiva tuulensuunta). Edellä mainittuihin nyrkkisääntöihin kuuluu, että kylmällä ilmamassalla tulisi olla vähintään 80-100 km pyyhkäisymatkaa jäättömän vesialueen yllä. Suomen merialueet ovat melko kapeita, jolloin kaikilla ilmavirtaussuunnilla lumitykkiä ei yksinkertaisesti pysty muodostumaan. Rajoittava tekijä on myös osittain se, että kaikilla ilmavirtaussuunnilla ei useimmiten ole tarjota riittävän kylmää ilmamassa. Esimerkiksi lounaistuulet tarjoavat mittavia pyyhkäisymatkoja, mutta eivät yleensä tuo mukanaan kylmää ilmamassaa. Merikarvian tapauksessa pyyhkäisymatkaa oli hulppeasti, koska itä-länsisuunnassa jäätöntä matkaa järjestyi noin 300 km. Sattumalta läntinen ohjaava ilmavirtaus ei myöskään tuonut mukanaan liian lämmintä ilmaa, koska kylmä ilmamassa oli vallannut koko Fennoskandian. Oheisessa kuvassa näkyy mahdolliset saapumissuunnat lumitykkitilanteissa Kokkolan, Porin, Hangon ja Helsingin seudulla sekä lumitykin muodostumista mahdollisesti rajoittavat tekijät.
Lumitykkien mahdollisia saapumissuunta Helsingin, Hangon, Porin ja Kokkolan alueella sekä kunkin alueen merkittävimmät lumikuurojen muodostumista rajoittavat tekijät.
· Sopiva ohjaava virtaus (riittävästi aikaa). Toisinaan pullonkaulaksi lumitykin näkökulmasta muodostuu liian voimakas ohjaava virtaus. Tässä tilanteessa ilmamassa ei ehdi muuntua riittävästi ja seurauksena on lumitykin jääminen hennon hiutaloinnin asteelle. Tällä kertaa ohjaava virtaus oli luokkaa 10 m/s, jota voi pitää jokseenkin optimaalina lumitykin näkökulmasta. Ohjaavan virtauksen täytyy myös kuljettaa lumikuuroja rannikolle, mikä Merikarvian tilanteessa toteutui perjantaiaamupäivästä alkaen, kun ohjaava virtaus kääntyi pienikokoisen matalapaineen jälkipuolella läntiseksi. Tätä voi havainnollistaa alla olevalla animaatiolla, jossa näkyy 925 hPa:n ilmavirtaus turkooseilla nuolilla (pintavirtaus mustilla nuolilla). Yötä kohti ohjaava virtaus kääntyi kohti pohjoista, mikä oli yksi osatekijä lumiryöpyn päättymisessä.
Hirlam-mallin ennuste 8.1.2016 ilmanpaineesta (mustat käyrät), pintatuulen suunnasta (mustat nuolet) sekä 925 hPa:n tuulensuunnasta (turkoosit nuolet).
· Sopiva tuuliväänne. Tämä liittyy läheisesti edelliseen kohtaan. Mikäli nopeusväänne kasvaa pilven pohjan ja huipun välillä liian suureksi, kuuropilven muodostuminen käy dynaamisesti mahdottomaksi. Liian heikon väänteen vallitessa puolestaan tilannetta dominoivat termiset pakotteet, esimerkiksi maatuulirintaman liikkeet, eikä järjestäytynyttä lumikuuronauhaa pääse syntymään. Myös suuntaväänteellä on vaikutusta. Lumikuuronauhojen kannalta edullisinta on, jos nauhojen mahdollisina siemeninä toimivat rullapyörteet ovat mahdollisimman elinvoimaisia. Tämä mahdollistuu, jos suuntaväännettä on vähän. Pohjois-Amerikassa käytettyjen nyrkkisääntöjen mukaan ideaalitilanteessa suuntaväänne on alle 30 astetta. Alla olevan malliluotauksen mukaan Merikarvian edustalla suuntaväänne väheni aamusta iltapäivään noin 90 asteesta alle 30 asteeseen. Vielä edeltävän yön aikana rannikon edustalla oli eteläisen ohjaavan virtauksen vallitessa etelä-pohjoissuuntainen lumikuuronauha. Nauhan orientaation muuttumisen yksi osasyy voi olla tuuliprofiilin muuttuminen länsipainotteiseksi.
ECMWF-mallin ennustettu luotaus Selkämerellä Merikarvian edustalla 8.1.2016 klo 05 ja 14 sekä 9.1.2016 klo 02.
· Pakotteiden voimakkuus. Synoptisen mittakaavan nousuliikepakote voi voimistaa lumitykkiä. Merikarvian tilanteessa merkittävä vaikutus on saattanut olla kahdella eri tekijällä. Ensinnäkin, Selkämeren pohjoisosassa olleen pienikokoisen matalapaineen läheisyydessä oli havaittavissa alatroposfäärin tuulikonvergenssia. Erityisesti tuulikonvergenssia esiintyi matalapaineen takaosan luoteisvirtauksen kohdatessa merialueen eteläosan eteläisen perusvirtauksen (ks. yllä oleva animaatio). Toiseksi, lännestä saapuneet lumikuurot kohtasivat alustan rosoisuuden lisääntyessä tuulikonvergenssia, jolla on saattanut olla pientä vaikutusta lumisateen voimakkuuteen.
· Säätilanteen staattisuus (lumipyryn kestoaika). Kun lumitykki lähtee toimimaan, paikallisia lumikertymiä voi rajoittaa meteorologisten reunaehtojen muuttuminen. Pelkästään ohjaavan virtauksen muuttuminen saattaa kääntää lumitykin suuntaan siten, että lumimäärä jakautuu laajalle alueelle pitkin rannikkoa. Merikarvian tapauksessa tilanne pysyi harvinaisen staattisena tuntikausia. Pienikokoinen matalapaine jäi todennäköisesti termisistä syistä lähes paikalleen. Näin ollen meteorologisesti ei ollut mitään syytä, miksi lumikuuronauha olisi vaihtanut paikkaa tai orientaatiotaan.
· Lumen rakenne. Hyvin karkean nyrkkisäännön mukaan 1 mm vettä vastaa 1 cm lunta. Vaihteluväli on kuitenkin erittäin laaja siten, että raskasta nuoskalunta kertyy samasta vesimäärästä huomattavasti ohuempi kerros kuin kevyttä pakkaslunta. Merikarvialla mitattu sademäärä oli noin 30 mm ja kertynyt lumimäärä 73 cm. Nuoskalumitapauksessa lumipeitteen lisäys olisi voinut olla ”vain” 20 cm.
Edellä mainitut mausteet voidaan taulukoida vertaillen seuraavasti:
Osatekijä |
Tilanne yleensä |
Case Merikarvia |
Jäätön vesialue |
Vain alkutalvesta rantaa myöten jäätöntä |
Tammikuun alussa rantaan asti jäätöntä |
Pystysuuntainen lämpötilaero |
noin 15 astetta |
noin 20 astetta |
Lumitykin korkeus |
1.5–2 km |
noin 3 km |
Pyyhkäisymatka |
100–200 km |
200–300 km |
Tuulen suunta |
NW-ESE |
W |
Nopeusväänne |
vaihtelee suuresti |
optimaali eli n. 10 m/s |
Suuntaväänne |
0…60 astetta |
optimaali eli alle 30 astetta |
Pakotteet |
yleensä rannikkokonvergenssi |
useita tuulikonvergenssi lähteitä |
Staattisuus (kesto) |
muutamia tunteja |
12-18 tuntia |
Lumen rakenne |
”vesi-lumikerroin” 0.7-2 |
”vesi-lumikerroin” noin 2.5 |
Vertailu osoittaa, että kyseessä oli melkoinen ja todennäköisesti myös hyvin harvinainen osatekijöiden yhteensattuma. Tämä selittää myös sitä, miksi länsirannikolla (tai muuallakaan Suomen rannikolla) lumitykit eivät ole tämän tehokkaampia tai yleisempiä.
Suomen mittakaavassa Merikarvian tapaus on toistaiseksi ainutkertainen. Itämeren alueella ja maailmanlaajuisesti 73 senttimetrillä ei voi paukutella henkseleitä. Jo niinkin lähellä kuin Gävlessä Ruotsissa hautauduttiin 90-luvun lopussa puolentoista metrin kinoksiin. Pohjois-Amerikan suurilla järvillä lunta on tupruttanut vielä reilusti tätäkin enemmän.
Mielenkiintoinen oheiskysymys on, voiko tykki ampua suuren valkoisen ammuksensa joskus myös Helsinkiin. Heti aluksi on todettava, että Selkämeren tykin tähtäin olisi nytkin voinut osoittaa ilman mitään esteitä suoraan Raumalle tai Poriin. Voi vain kuvitella vaikutusten kertaluokan muutoksen Merikarvian lumi-infernoon verrattuna.
Pidän täysin mahdollisena, että myös Helsingin seutu voisi kokea Suomenlahden lumitykistä joskus puolimetrisen ammuksen. Suomenlahti asettaa kuitenkin varsin jyrkkiä reunaehtoja moisen tapahtuman esiintymiselle. Suomenlahden pohjukan jäätyminen saattaa alkaa varsin varhain alkutalvella, mikä lyhentää suurinta mahdollista pyyhkäisymatkaa. Lisäksi ohjaavan virtauksen optimaali vaihteluväli on selvästi kapeampi kuin Selkämerellä. Karkeasti arvioituna tämä kanava on Helsingistä katsottuna vain noin 30 asteen suuruinen kohti itäkaakkoa. Jos siis Selkämerellä merkittävin rajoittava tekijä on suotuisista suunnista saapuvan ilman liika lämpimyys, Suomenlahdella lumitykin tyrehdyttää helpoimmin epäoptimaali ilmavirtaussuunta (tai jään lyhentämä pyyhkäisymatka).
Ei ole kuitenkaan mitään esteitä sille, etteikö kohtalainen itäkaakkoinen arktinen ilmavirtaus voisi pysyä noin vuorokauden staattisena keskimääräistä lämpimämmän ja jäättömän Suomenlahden toimiessa lämmön ja kosteuden lähteenä. Kyseinen tapaus jumittaisi liikenteen lähes täysin muutamaksi päiväksi pääkaupunkiseudulla ja aiheuttaisi todennäköisesti massiivisen keskustelun talvikunnossapidon tasosta.
Talvien leudontuessa merijäättömän aikajakson pituus kasvaa. Vaikka talvien keskilämpötilat kohoaisivat, tulevinakin talvina arktista ilmamassaa tulee väijymään itään levittäytyvän laajan manneralueen yllä ja aika-ajoin piipahtamaan Suomen merialueiden yllä. On siis varsin mahdollista, että lumitykit puskevat lunta tulevinakin vuosina pitkin Itämeren rantoja vähintään entiseen tahtiin.
Marraskuun 2012 Antti-myrskyn jälkeen alkoi liki vuoden mittainen jakso, jonka aikana myrskyisyys Suomen merialueilla oli lähes olematonta. Lokakuussa alkoi kuitenkin tapahtua Pohjois-Atlantilla, ja voimakkaat länsivirtaukset ottivat suursäätilan haltuunsa. Esimakua myrskysyksystä antoi lokakuun lopun Simone-hirmumyrsky läntisessä Euroopassa. Se puhalteli muun muassa Tanskassa mittareihin maan ennätyslukemat. Kuten edellisessä blogimerkinnässä kirjoittelin, Simone ohitti Suomen lähes täysin, mutta aiheutti vahinkoja esimerkiksi Etelä-Skandinaviassa ja Baltiassa.
Tästä linkistä aukeava animaatio (koko noin 11 Mb) summaa lähes kahden kuukauden mittaisen jakson tapahtumat ylätroposfäärissä, vajaan 10 kilometrin korkeudella. Animaatio juoksee nopeasti eikä siinä ehdi juuri kiinnittää yksikohtiin huomiota. Sen sijaan silmiin pistävää on lähes jatkuva voimakkaiden suihkuvirtausten marssi Atlantin yli Eurooppaan. Nämä näkyvät punaisina ja violetteina vyöhykkeinä, jotka liikkuvat lännestä itään. Käytännössä nämä värit kuvastavat alueita, joilla tuulennopeus on 70 m/s (250 km/h) tai enemmän. Lisäksi huomionarvoista on virtauskentän itä-länsisuuntaisuus, mikä tulee ilmi mustien käyrien ”pyrkimyksenä” olla leveyspiirien suuntaisia. Käyrissä näkyy aaltoja (yläsolia ja –selänteitä), jotka etenevät niin ikään lännestä itään. Yleensä kahden kuukauden jakson aikana tapahtuu niin, että aallot kasvavat jossain vaiheessa suuriksi ja rikkovat siistin lännestä itään suuntautuvan yhtenäisen virtauksen. Edellisten kahden kuukauden aikana näin ei ole juuri tapahtunut, pois lukien hyvin lyhyet jaksot mm. Eino-myrskyn jälkeen.
Mikäli suursäätila säilyy animaatiossa nähdyn kaltaisena, ylävirtauksessa olevien aaltojen ja voimakkaiden suihkuvirtausten yhteydessä esiintyy toistuvasti jopa räjähdysmäisen nopeaa myrskymatalapaineiden muodostumista. Jos aallot eivät riko voimakasta läntistä virtausta edes itäisen Euroopan ja Venäjän alueella, voimakkaat suihkuvirtausalueet ja terävät yläsolat pääsevät kulkemaan myös Fennoskandian yli. Tällöin meidän alue ei enää olekaan matalapaineiden hautausmaa, vaan osa matalapaineista voi olla jopa voimakkaimmassa vaiheessaan Suomea ylittäessään. Keskimäärin Atlantin myrskyradan matalapaineet saavuttavat huippuintensiteettinsä hyvissä ajoin Suomen länsipuolella - yleensä jo keskellä Atlanttia.
Marraskuun puolivälistä joulukuun puoliväliin ulottuvalla aikajaksolla ylätroposfääri on ollut yläselänteen vaikutuspiirissä Euroopan läntisimmissä osissa. Euroopan itäisin ja pohjoisin osa on puolestaan ollut yläsolan aluetta. Asetelma tulee hyvin esiin 300 hPa:n korkeuskentän anomaliasta. Sama näkyy luonnollisesti myös ilmanpaineen ja tuulten anomaliakartoissa. Läntisessä tuulikomponentissa on melkoinen positiivinen poikkeama Islannista Fennoskandiaan ulottuvalla alueella. Lisäksi ilmanpaine on ollut Brittein saarten tienoilla hulppeasti keskimääräisen yläpuolella, kun taas Venäjällä ilmanpaine on ollut keskimääräistä alempi. Asetelma on näin ollen ollut erityisen otollinen lännestä tai länsiluoteesta saapuville säähäiriöille. Se miksi suursäätila on asettunut näin pitkäksi aika edellä kuvattuun kuoppaan, ei selviä tässä pintaraapaisussa eikä välttämättä selviäisi perusteellisessa tutkimuksessakaan.
Vertaillaanpa seuraavaksi neljää myrskytilannetta keskenään. Alla oleviin kahteen kuvapaneeliin on koottu Tapani-, Eino-, Oskari- ja Seija-myrskyjen sääkartat tapahtumapäivältä ja kahdelta edeltävältä päivältä. Ylemmässä kuvapaneelissa on esitetty samoja ylätroposfäärin tilasta kertovia kuvia kuin edeltävässä animaatiossa. Kaikille tilanteille yhteistä näyttää olevan, että kartta-alueen virtauskenttä on korostuneen läntinen ja myrskykeskuksen saapumiseen liittyy voimakas läntinen tai luoteinen ylätroposfäärin suihkuvirtaus. Yleisin tilanne näyttää olevan, että myrskykeskus (punainen M-kirjain) kehittyy suihkuvirtauksen vasemmalla jarruuntumisalueella ja terävöityvän yläsolan edessä. Seijan tapauksessa kehityksen alkuvaiheet tapahtuivat kuitenkin oikealla kiihdytysalueella ja lisäpotkua pintamatalapaineen kehitykseen toi lännestä saapunut yläsola. Lisäksi joskus näyttää käyvän niin, että jo tapahtumaa edeltävänä päivänä maamme yli liikkuu voimakas suihkuvirtaus, jota seuraa nopeassa tahdissa toinen. Näin kävi ainakin Einon ja Seijan tapauksissa.
Toisessa kuvapaneelissa nähdään 850 hPa:n ekvivalentti potentiaalilämpötilan ja ilmanpaineen kehitys em. myrskyjen yhteydessä. Se osoittaa selvästi, että Tapani-myrsky saapui meille hyvin kaukaa lännestä ja oli jo keskellä Atlanttia melko voimakas. Eino-myrskyn kahden vuorokauden reitti on Tapania lyhyempi, mutta liikerata on Tapanin tavoin jokseenkin itä-länsisuuntainen. Sen sijaan Oskari saapui meille länsiluoteesta ja sai alkunsa Grönlannin itärannikon tienoilta. Seija-myrsky poikkeaa muista kolmesta siten, että se voimistui myrskyksi kaikkein lähimpänä Norjan rannikkoa. Myrskyn siemenenä toiminut osakeskus myös kaarsi lounaasta kohti Fennoskandiaa. Näistä neljästä myrskystä Seija saattoi siis olla Suomeen saapuessaan lähimpänä maksimi-intensiteettiään.
300 hPa korkeuskenttä (mustat käyrät) ja tuulennopeus (värilliset alueet) neljässä eri myrskyssä tapahtumapäivänä ja kahtena edeltävänä päivänä. Ylärivissä Tapani-myrsky ja sen alla Eino, Oskari ja Seija. (Lähde: Wetter3)Ilmanpaine (valkoiset käyrät) ja 850 hPa:n ekvivalentti potentiaalilämpötila (värilliset alueet) neljässä eri myrskyssä tapahtumapäivänä ja kahtena edeltävänä päivänä. Ylärivissä Tapani-myrsky ja sen alla Eino, Oskari ja Seija. (Lähde: Wetter3)
Helposti luulisi, että myrskyjen voimakkuuden vertailu on yksinkertaista, mutta tämä syystalvi on osoittanut, ettei asia ole niin. Vertailua voi tehdä lukuisilla eri tavoilla ja kaiken kukkuraksi on vielä pidettävä mielessä alueelliset erot. Syystalven 2013 kolme myrskyä osuivat kaikki maan etelä- ja keskiosaan, mutta pahimmat vahinkoalueet poikkesivat toisistaan. Eino kaatoi metsää erityisesti Järvi-Suomen alueella, Oskari Salpausselän tienoilla ja sen eteläpuolella ja Seija maan lounaisosassa. Lehtienpalstoilta on saanut lukea huutelua maakunnista toisiin ja jonkinasteista väittelyä voimakkaimman myrskyn nimestä. Jälkikäteen on voinut todeta, että kommentoijat ovat olleet oikeassa oman maakuntansa kohdalla.
Jos myrskyt halutaan kaikista vaikeuksista huolimatta ”ränkätä”, katsantotavan pitää olla valtakunnallinen ja monitahoinen. Alla olevaan taulukkoon on koottu edellä käsiteltyihin neljään myrskyyn liittyvää numerotietoa. Näiden tietojen perusteella vaikuttaa selvältä, että listan kärkeen menee selvällä erolla muihin joulukuun 2011 Tapani-myrsky. Sitä seuraavat lähes tasavahvoina Eino ja Seija. Näin ollen Oskari jää listan neljänneksi.
Taulukossa meteorologin silmiin pistää erityisesti sekoittuneen kerroksen paksuudet. Kaikissa tilanteissa tuulisimman alueen rajakerros on ollut yli kilometrin korkuinen. Einon tapauksessa se oli jopa huimat 1800 metriä. Huomionarvoisia ovat myös rajakerroksen huipun tuulennopeus sekä suihkuvirtausten tuulennopeudet. Nämä ovat olleet luokkaa 30-35 m/s ja 60-85 m/s jokaisessa myrskyssä. Vertailussa suurimpiin maapinnalla mitattuihin puuskiin, nähdään, että rajakerroksen tuulimaksimi ja puuskamaksimi ovat paikoin hyvinkin lähellä toisiaan.
On mahdollista, että pelkästään meteorologisin perustein tarkasteltuna listan kakkostila kuuluisi Seijalle, mutta vaikutusnäkökulmasta taas Eino saattaa suuremman alueellisen kattavuuden, pitkäkestoisten sähkökatkojen laajuuden ja kaatuneen puun määrällä mitattuna ajaa Seijan ohi. Loppujen lopuksi, näistä listoista ei kuitenkaan ole juuri muuta hyötyä kuin se, että tulevien myrskyjen voimaa ja vaikutuksia on helpompi kuvailla, kun antaa esimerkeiksi kaikkien tuntemia ja muistamia tapauksia. Oheinen taulukko olkoon myös muistutuksena siitä, kuinka monella tavalla myrskyjä voidaan vertailla.
Eino | Oskari | Seija | Tapani | |
Kaatunut puusto (milj. m3) | 1.5 | 0.2-0.7 | 0.5-2 | 3.5 |
Sähköttömät taloudet (tuhatta) | 230 | 50 | yli 200 | yli 300 |
Pelastustoimen tehtävät | ~2000 (alustava) | ~500 (alustava) | ~1500 (alustava) | ~6000 |
Pahin vahinkoalue | Järvi-Suomi | Uusimaa | Maan lounaisosa | Maan lounaisosa |
Sekoittuneen kerrokseen paksuus (m) | ~1800 | ~1400 | ~1400 | ~1400 |
Tuuli rajakerroksen huipulla (m/s) | 33 | 29 | 35 | yli 35 |
Tuuli ylätroposfäärin suihkuvirtauksessa Suomessa (m/s) | 75-85 | 60-70 | 65-75 | 70-80 |
Kovin keskituuli merellä (m/s) | 27 | 28 | 31 | 29 |
Kovin puuska maalla (m/s) | 27 | 26 | 30 | 32 |
Routa | ei | ei | mitätön | ei |
Maa-alueiden tuulivaroituslukema (m/s) | 25 | 20 | 25 | 30 |
Sen sijaan, että tarkastellaan tuhansia luotauksia yhtenä kokonaisuutena, on myös mielenkiintoista poimia joukosta kaikkein ”mehevimmät” tapaukset ja tarkastella niitä omana kokonaisuutenaan. Neljäosaisen pöytälaatikkotutkimuksen kolmanteen lukuun olenkin koostanut Suomen luotausasemien havaintosarjoista eri parametrien ennätyslistat sekä joukon havaintoja, joita kutsun tästä eteenpäin iltapäivälehtimäisesti superluotauksiksi. Olen määritellyt superluotaukseksi mittauksen, jossa seuraavat ehdot täyttyvät:
1. Alimman 500 metrin keskimääräinen vesihöyryn sekoitussuhde on vähintään 11 g/kg
2. 850 ja 500 hPa:n painepintojen välinen lämpötilavähete on vähintään 7 K/km
3. Pinnan ja 500 hPa:n välinen tuuliväänne on vähintään 15 m/s
Kannattaa huomata, että edelleenkin tarkastelusta puuttuu kolmas syvän kostean konvektion ainesosa eli kehityksen laukaiseva tekijä. Niinpä superluotauspäivät ovat saattaneet olla maassamme vesisateen sävyttämiä kosteanhiostavia kesäpäiviä ilman sen suurempaa ukkosiin liittyvää dramatiikkaa. Yllä asetettuihin ehtoihin ei myöskään liity pitkälle vietyjä tieteellisiä perusteluja. Tämäntapainen tarkastelu lienee silti mielekästä tehdä, koska yo. ehdot täyttävissä tilanteissa ovat aina läsnä ilmiselvät vaaraa aiheuttavan sään episodin ainekset. Jäljempänä ruodin myös superluotauksiin liittyneitä synoptisia tilanteita. Tällä tavoin voi saada karkealla tasolla käsityksen, miten ”katastrofin” ainekset löytävät toisensa.
Kun 50 vuoden kotimainen luotausaineisto laitetaan järjestykseen 850 hPa:n lämpötilan (”ilmamassan lämpötila”) perusteella, saadaan alla oleva lista. Siitä nähdään välittömästi kesän 2010 korostunut asema. Viime kesänä rikottiin ensimmäistä kertaa Suomen asemilla +20 asteen haamuraja, ja Suomen ennätystä pitää hallussaan Jyväskylä 8. elokuuta mitatulla +20,7C lukemallaan. Kahden kymmenen kuumimman listalta selviää myös, että muun muassa kesinä 1970, 1983, 1992 ja 2008 meillä on vieraillut erittäin kuumia ilmamassoja.
Pvm Klo T850 Asema
8.8.2010 0600 20,7 Jyväskylä
8.8.2010 1200 20,5 Jokioinen
8.8.2010 0000 20,3 Jokioinen
29.7.2010 0600 20,2 Jyväskylä
12.8.1992 0000 19,9 Sodankylä
30.7.2010 0000 19,8 Sodankylä
8.8.2010 1800 19,6 Jyväskylä
11.8.1992 1200 19,5 Jokioinen
3.7.2008 0000 19,4 Sodankylä
26.6.2009 0000 19,2 Sodankylä
Alatroposfäärin kosteuden ranking-listalla komeilee niin ikään monta kesän 2010 luotausta. Kärkisijan vie kuitenkin vuosisadan ukkoskesän, 1972 mittaus Sodankylästä. Tuolloin vesihöyryn sekoitussuhde oli alimmassa puolessa kilometrissä huikeat 15,6 g/kg. Hulppeita kosteusmääriä on mitattu myös kesien 1970, 1988, 1991 ja 2003 aikana.
Pvm Klo Kosteus Asema
13.7.1972 1200 15,6 Sodankylä
16.7.2010 0000 15,0 Jokioinen
7.8.2010 1800 14,9 Jyväskylä
28.7.2003 1800 14,9 Jyväskylä
17.7.1988 0000 14,7 Jokioinen
1.8.1961 1200 14,6 Jokioinen
16.7.2010 0600 14,5 Jyväskylä
17.7.2001 1800 14,3 Jyväskylä
8.8.2010 1200 14,2 Jokioinen
8.8.2010 0600 14,1 Jyväskylä
Kolmas ranking-lista käsittää tuuliväännejärjestyksessä luotaukset, joissa alimmassa puolessa kilometrissä on ollut kosteutta vähintään 12 g/kg. Jotta tapaus on päässyt top20-listalle, maanpinnan ja 500 hPa:n välisen väänteen on täytynyt olla vähintään 19,6 m/s. ”Dynaamisimmat” ympäristöt ovat tarjoilleet jopa yli 25 m/s tuuliväänteitä. Listalla on varsin mielenkiintoisia päiviä, sillä 6.7.1999 havaittiin jättirakeita, 20.8.2004 esiintyi Kontiolahdella F2-luokan trombi, 5.7.2002 maan itäosassa jyräsi ensimmäinen Suomessa vahvistettu syöksyvirtausparvi ja 29.7.2010 maan keskiosaa höykytti Asta-rajuilma, joka sekin täytti syöksyvirtausparven määritelmän.
Pvm Klo Tuuliväänne Asema
17.8.2007 0000 27,5 Jokioinen
23.6.2006 0600 26,2 Jyväskylä
20.8.2004 0000 26,0 Jokioinen
19.7.1970 1200 25,9 Jyväskylä
5.7.2002 1200 24,9 Sodankylä
18.8.2008 0000 24,5 Jokioinen
19.7.1970 1200 24,2 Jokioinen
22.7.2010 1800 23,6 Jyväskylä
29.7.2010 1800 22,5 Jyväskylä
6.7.1999 1200 22,0 Jokioinen
Edellä esitetyn superluotauksen ehdot (7 K/km, 11 g/kg, 15 m/s) täyttäviä kandidaatteja löytyi koko luotausaineistosta ainoastaan 20 kappaletta. Jälleen kerran kesä 2010 hypähtää listalta esiin, sillä 20 luotauksesta peräti puolet on peräisin heinä-elokuulta 2010. Kaiken kaikkiaan luotaukset voidaan ryhmitellä tapauksiin, jolloin päädytään seuraavaan kahdeksaan episodiin (suluissa merkittävät tapahtumat):
1. 19.-20.7.1970
2. 9.7.1972 (Puumalan rajuilma, derecho-kandidaatti)
3. 9.8.1972
4. 15.-16.6.1998 (Iitin trombi)
5. 26.6.1999
6. 25.-26.7.2010 (rajua ukkosta)
7. 28.-30.7.2010 (Asta, derecho)
8. 8.8.2010 (Sylvi-rajuilma ja jättirakeet)
Tarkastelu osoittaa siis selvästi sekä viime kesän että ylipäätään superluotausten harvinaislaatuisuuden. Jotta asia tulisi konkreettisemmaksi, alla on luotausdiagrammilla esitettynä muutamia ehdot täyttäviä luotauksia. Ensimmäiset kaksi esimerkkiä (8.8.2010 ja 26.6.1999)kuvaavat äärimmäisen ”räjähdysherkkää” iltapäivän tilannetta. Kuten näin kuumissa ilmamassoissa yleensä on, tilanne on melko vahvasti tulpattu johtuen kaakosta saapuneesta ”koholla olevasta” hyvin sekoittuneesta ilmakerroksesta. Lopulta käynnistävän tekijän vahvuus määrittelee sen, lähteekö patoutunut potentiaalienergia muuttumaan liikkuvampaan muotoon.
Esimerkki vuodelta 1998 tuo karulla tavalla ilmi tämän työmenetelmän heikon kohdan. Rajakerros saattaa olla äärimmäisen stabiili, jolloin ainoa keino purkaa potentiaalienergiaa on kohokonvektio. Kyseisessä esimerkissä rajakerroksen kostean kerroksen yläreunasta kohotetuille ilmapaketeille konvektiivinen esto on huomattava. Kuitenkin, mikäli esto on voitettavissa, noin 2 kilometristä ylöspäin ukkospilvet nousisivat taivaalle raketin tavalla. Kyseinen termodynaaminen asetelma tekee trombien esiintymisen mahdottomaksi ja laskee syöksyvirtausriskinkin vähäiseksi.
Kotimaisen noin 50 vuotta käsittävän, tuhansia mittauksia sisältävän luotausaineiston perusteella voidaan todeta, että vain parissa kymmenessä tilanteessa alimman puolen kilometrin kerroksessa kosteutta on ollut yli 13,5 g/kg ja 850 hPa:n lämpötila on ylittänyt +18 astetta. Suuren kosteuden tilanteissa (>12 g/kg) 850 hPa:n 500 hPa:n välinen lämpötilavähete on harvinaisen suuri, jos se ylittää 6,8 K/km. Vastaavasti maanpinnan ja 500 hPa:n välinen tuuliväänne on harvinainen, jos se on kosteassa luotauksessa yli 20 m/s.
Jos luotausaineisto pengotaan edellä esitettyjen parametrien ehdoilla >7 K/km, > 11 g/kg ja > 15 m/s, saadaan erilleen superluotausten populaatio. Näissä tapauksissa ruuti on todella kuivaa ja useimmiten tuulista, ja ”katastrofi” jää kiinni ainoastaan siitä, onko käynnistävä tekijä riittävän voimakas. Ehdot täyttäviä luotauksia löytyi aineistosta ainoastaan 20 kappaletta, joista peräti 10 havaittiin kesällä 2010. Tämä korostaa kesän 2010 poikkeuksellisuutta sekä sitä faktaa, että rajuimmat vaaraa aiheuttavan konvektion ainesosien kohtaamiset ovat maassamme erittäin harvinaisia.
Superluotauksiin liittyvät säätilanteet ovat synoptisesta näkökulmasta jopa hämmentävän samankaltaisia. Tästä lisää seuraavassa luvussa.
Luotauksia käsittelevän pöytälaatikkotutkimuksen toisessa tarkastelen Suomen kolmen luotausaseman havaintohistoriaa ”haulikkograafien” avulla. Tarkastelussa on lukuisia instabiilisuuden, alatroposfäärin kosteuden, tuuliväänteen ja muiden parametrien yhdistelmiä (pitäen toki pääpainon syvän kostean konvektion ainesosissa). Tällä tavoin ykkösluvun pintaraapaisuun saadaan huomattavasti lisää syvyyttä. Jos ykkösluku jäi lukematta, kannattaa kuitenkin perehtyä luvun alkupuolella esitettyyn motivaatio- ja työmenetelmäosaan.
Koska pääasiallinen mielenkiinto kohdistuu syvän kostean konvektion ainesosiin, tämän luvun perusgraafi on alla oleva ”haulisarja”. Siinä on esitetty kaikkien kolmen aseman kesä-elokuun luotausten kosteus-instabiilisuuspisteparit noin 50 vuoden ajalta. Kaikkiaan kuvassa on edustettuna siis yli 25 000 luotausta.
Syvän kostean konvektion kannalta graafin otollisin alue sijoittuu siis oikeaan ylänurkkaan. Niinpä kuvasta nähdään välittömästi, että nämä kaksi aineosaa kohtaavat (näyttävällä tavalla) perin harvoin. Jakauma on kokonaisuudessaan kiilamainen siten, että instabiilisuuden vaihtelu on suurinta vähän kosteutta sisältävissä tilanteissa. Lisäksi lukumääräisesti korkeita lämpötilavähetteen arvoja on eniten niin ikään ”kuivissa” luotauksissa. Jos tarkastellaan ainoastaan 10-13 g/kg kosteutta sisältäviä luotauksia, nähdään, että merkittävässä osassa näitä luotauksia lämpötilavähete on pienempi kuin 6 K/km (eli stabiliteetiltaan likimain neutraali). Yli 13 g/kg kosteutta sisältävissä tapauksissa stabiilien tapausten osuus näyttää pienenevän.
Kun vaihdetaan tuuliväänne lämpötilavähetteen tilalle, saadaan alla olevan mukainen kuva. Tässäkin tapauksessa parhaat rakennusaineet rajuihin säätilanteisiin sijaitsevat kuvan oikeassa ylälaidassa. Aivan kuten perusainesosien kohdalla, myös runsas kosteus ja merkittävä tuuliväänne ”eksyvät” varsin harvoin samaan luotaukseen. Jos luotausjoukosta kahmaistaan pois tapaukset, joissa kosteutta on vähintään 10 g/kg ja tuuliväännettä 15 m/s, saadaan ainoastaan muutaman sadan luotauksen joukko. Tilastollisesti Suomessa kesä-elokuussa tällaisten luotausten osuus on säälittävät 1,5% (vuosittain kesä-elokuussa siis keskimäärin 1,4 tällaista päivää). On syytä muistaa, että näistäkin tapauksista osa jää torsoksi esimerkiksi vähäisen instabiilisuuden tai liian suuren konvektiivisen eston vuoksi.
Lisää taustoittavaa tietoa saadaan, kun tarkasteluun otetaan ilmamassan lämpötilaa kuvaava suure (850 hPa:n painepinnalla eli reilun kilometrin korkeudella vallitseva lämpötila). Alla olevassa kuvaajassa näkyy samainen kesä-elokuun haulisarja, mutta nyt siten, että vaaka-akselilla on ilmamassan lämpötila ja pystyakselilla alatroposfäärin kosteus. Jakaumasta tulee kauniisti kaareutuva, ja sen yläreunaa rajaavat kyllästystilassa olevat tapaukset. Kokemus on osoittanut, että valtaosassa merkittävistä syvän kostean konvektion päivistä kosteutta on alimmassa puolen kilometrin siivussa vähintään 8-10 g/kg. Kuvaajasta näkyy, että nämä lukemat saavutetaan vain ilmamassoissa, joissa T850 on vähintään välillä +5…+8C. Yli 12 g/kg lukemiin päästään puolestaan vain kympin ylittävillä ilmamassan lämpötiloilla.
Kokonaiskuva muuttuu yhä mielenkiintoisemmaksi, kun tarkastellaan ilmamassan lämpötilan ja instabiliisuuden yhdistelmää. Nähdään, että havaintopisteet muodostavat hieman samantapaisen muodostelman kuin kuvassa, jossa vaaka-akselilla oli kosteus. Kylmissä ilmamassoissa lämpötilavähetteen vaihtelu on varsin suurta, mutta alkaa supeta selvästi helleilmamassoissa siten, että kaikkein kuumimmissa massoissa vähetteet ovat varsin suuria.
Alla olevassa kuvassa musta palloviiva kuvaa kyseisessä lämpötilassa vallitsevaa lämpötilavähetettä kyllästystilassa olevalle ilmalle 850 hPa:n ilmanpaineessa. Näin ollen kaikki viivan yläpuolelle jäävät havaintopisteet kuvaavat luotauksia, joissa 850 hPa:n tasolla tilanne oli instabiili kostea-adiabaattisille muutoksille. Oranssi palloviiva vastaa mustaa, mutta on esitetty 500 hPa:n painetasolle. Kannattaa myös huomata, että lämpötilalukemat on merkitty palloviivan vierelle. Lämpötilalukemat pyrin valitsemaan siten, että ne vastaavat suuntaa antavasti samassa kohdassa olevien mustien pallojen tilanteita. Eli toisin sanoen tilanteissa, joissa T850 on +20C, T500 on varsin lähellä -8C:aa. Kuvan vihreä palloviiva on kahden ensin mainitun palloviivan perusteella laskettu keskimääräinen 850 ja 500 hPa:n lämpötilavähete kyllästystilassa olevalle ilmalle. Jos käytetään vertailukohtana mustaa ja vihreää viivaa, kuvasta nähdään, että varsin merkittävässä osassa tapauksia luotaus on kostea-adiabaattisille ilman pystysiirroksille epävakaa. Tämä pitää paikkaansa etenkin lämpimille ilmamassoille, koska havaintopistejakauma kaareutuu diagrammin oikeaa ylänurkkaa kohti. Kuvasta voi myös päätellä, että yli +15C ilmamassoissa instabiilisuus on käytännössä aina läsnä, joten syvä kostea konvektio jää kiinni kahdesta muusta ainesosasta.
Tämän luvun viimeisissä kuvissa kurkataan pinnanläheisten ilmavirtausten ja 500 hPa:n ilmavirtausten suuntia yhdessä ilmamassan lämpötilan ja alatroposfäärin kosteuden kanssa. Ei ole yllätys, että kuumimpien ilmamassojen saapuessa meille tuulet puhaltavat pinnan lähellä erityisesti kaakon ja ylempänä etelän suunnalta. Kuvasta näkyy, että lämpimiä lukemia on havaittu myös esimerkiksi pohjoistuulten vallitessa. Nämä eivät ole välttämättä havaintovirheitä, vaan ovat todennäköisesti peräisin tilanteista, joissa ilmamassa on ollut vaihtumassa tai havaintopaikan yllä on ollut esimerkiksi heikkotuulinen korkeapaine.
Kosteimmissa tilanteissa pinnanläheisten virtausten suuntavalikoima on hieman edellä nähtyä laajempi. Suuri osa tapauksista sijoittuu etelän ja idän välille. Keskitroposfäärissä suunnat painottuvat kaakon ja lounaan välille. Koillisia erittäin kosteita virtauksia saattaa esiintyä esimerkiksi tilanteissa, joissa kapea kostean ilman sektori yltää Suomeen, mutta pintavirtaukset jäävät puhaltamaan koillisesta.
Tässä luvussa tarkasteltiin Suomen 50 vuoden luotausaikasarjoja erityisesti kesätilanteiden ja syvän kostean konvektion kannalta. Alatroposfäärin kosteudesta, instabiilisuudesta, tuuliväänteestä ja ilmamassan lämpötilasta tehtiin useita kaksi parametria yhdistävää ns. scatter plottia. Tarkastelun keskeisimmät havainnot olivat:
· Suuri alatroposfäärin kosteus ja lämpötilavähete (keskitroposfäärin instabiilisuus) ovat harvoin läsnä samassa luotauksessa. Suurimmat lämpötilavähetteen arvot havaitaan yleensä vähän kosteutta sisältävissä luotauksissa.
· Suuri alatroposfäärin kosteus ja paksun kerroksen tuuliväänne ovat myös harvinainen yhdistelmä samassa luotauksessa. Keskimäärin kesässä on vain 1,4 päivää, jolloin Suomessa havaitaan luotaus, jossa kosteutta on vähintään 10 g/kg ja tuuliväännettä yli 15 m/s.
· Yli 12 g/kg kosteutta sisältäviä luotauksia havaitaan vain, kun 850 hPa:n lämpötila ylittää +10C.
· Lämpimissä ilmamassoissa lämpötilavähete on yleensä kostea-adiabaattisille ilman pystysiirroksille epävakaa. Kuumissa ilmamassoissa (T850 > +15C) näin on käytännössä aina. Syvän kostean konvektion syntyminen jää siis kiinni joko kosteudesta tai laukaisevasta tekijästä.
· Kuumimpien ilmamassojen saapuessa meille pinnanläheiset (vapaan ilmakehän) virtaukset puhaltavat useimmiten kaakosta (etelästä). Kosteimpien ilmamassojen saapuessa pinnanläheiset virtaukset ovat yleensä idän ja etelän välisestä sektorista.
Idea tämänkertaiseen pöytälaatikkotutkimukseen alkoi kyteä mielessäni jo reilu vuosi sitten. Taustalla oli huomio, että kuuro- ja ukkospilviä ennustaessa ja tutkiessa huomio keskittyy usein enemmän tai vähemmän konvektion käytettävissä olevan potentiaalienergian (CAPE) määrään. Tämä lähestymistapa on toki luonteva, koska CAPE tiivistää yhteen numeroon kahden syvän kostean konvektion ainesosan vaikutuksen. Mutta miksi ainesosia ja niiden esiintymistä ei voisi tarkastella myös yksitellen? Tunnettu tosiasiahan on, että CAPE ei ole ”jäykästi” ilmakehässä siirtyvä ominaisuus, eikä se kerro mitään energiamäärästä tulevien tuntien aikana. Potentiaalienergian määrään vaikuttavat ainesosat siis elävät enemmän tai vähemmän omaa elämäänsä, minkä vuoksi ainesosakohtaisessa tarkastelussa on erityinen oma mielenkiintonsa.
Penkomalla luotauksia voi esimerkiksi valottaa sitä, mistä ainesosasta meidän leveysasteilla on erityisesti ”pulaa” ja miten yleisiä erilaiset ainesosien kombinaatiot ovat. Näiden ajatusten siivittämänä sukelsin 50 vuotta käsittävään kotimaiseen luotausaineistoon. Hyvin pian huomasin, että sukellus menee syvemmälle kuin oli tarkoitus. Pohjakosketus ei silti ollut suuri vahinko, koska aineistosta paljastui monia hyvin mielenkiintoisia tuloksia. Julkaisen tulokset useammassa erillisessä blogimerkinnässä.
Sade- ja ukkoskuuropilvet vaativat syntyäkseen kolme ainesosaa:
1. Instabiilisuus eli sopiva lämpötilan pystyjakauma (eli maanpinnan lähellä riittävän lämmintä suhteessa ylempänä olevaan ilmaan)
2. Kosteus (maanpinnan lähellä)
3. Kehityksen käynnistävä tekijä
Jos yksikin näistä aineosista puuttuu, sade- tai ukkoskuuroja ei muodostu. Vaaraa aiheuttaville ukkospilville mainitaan joskus lisäainesosana paksussa ilmakerroksessa esiintyvä tuuliväänne (eli tuulen suunnan ja nopeuden muutokset ylöspäin mentäessä). Tämä tekijä ei kuitenkaan ole siinä mielessä vertailukelpoinen edellä mainittujen kanssa, että sen olemassaolo ei ole pakollinen vaarallisten ukkospilvien esiintymiselle.
Ainoa havaintoihin pohjautuva tapa tutkia ainesosien esiintymistä viime vuosikymmenien aikana, on tarkastella ilmakehäluotauksia. Niinpä tutkimusaineistoksi valikoituivat luotaushavainnot Jokioisista, Jyväskylästä ja Sodankylästä. Ensin mainitun aseman aikasarja kattaa vuodet 1961-2010 ja kahden viimeksi mainitun vuodet 1965-2010.
Instabiilisuutta kuvaa tässä tutkimuksessa 850 hPa:n ja 500 hPa:n välinen lämpötilavähete, mikä kertoo lämpötilan laskun määrän kilometriä kohti. Tämän noin 3,5 kilometrin paksuisen ilmakerroksen stabiilisuus on yleensä ratkaiseva pilven orastavan kasvun kannalta. Kosteusolosuhteita kuvaa puolestaan maanpinnan ja 500 metrin välinen keskimääräinen vesihöyryn sekoitussuhde. Suure kertoo, kuinka monta grammaa vesihöyryä on kilogrammassa ilmaa. Pelkkää 2 metrin korkeudella havaittua kosteutta ei olisi ollut järkevää ottaa mittariksi, koska käytännössä kosteutta on oltava ainakin muutaman sadan metrin paksuisessa kerroksessa, että se riittäisi kunnolla ruokkimaan ukkospilven kasvua.
Entä kuinka päästä käsiksi kolmanteen ainesosaan eli käynnistävään tekijään? Valitettavasti tämä työmenetelmä ei mahdollista ”triggeröinnin” tutkimista. Sääasema- ja varsinkin luotausasemaverkosto on useissa tapauksissa aivan liian harva, jotta käynnistävä tekijä voitaisiin varmuudella ”eristää” saati luokitella.
Luotausaineiston käyttö ei ole muutenkaan aivan ongelmatonta. Tekniikka, jolla luotauksia on tehty vuosikymmenten varrella, on vaihtunut useita kertoja. Alkuaikoina mittaukset kärsivät etenkin antureiden hitaudesta, jolloin alhaalla olevien ilmakerrosten olosuhteet saattoivat heijastua liian ylös, ja esimerkiksi kosteusanturi saattoi jäätymisen vuoksi pilata kosteusmittaukset ylätroposfäärissä. Mittaustekniikkaan liittyviä epähomogeenisuuksia en ole karsinut aineistosta mitenkään. Joukossa on myös pieni joukko selviä yksittäisiä mittausvirheitä. Nämä tulevat useimmiten näkyviin jakaumien ulkopuolella sijaitsevina pisteinä.
Ennen kuin hypätään tulosten pariin, on vielä syytä korostaa, että ainesosien tarkastelu erikseen ei ole nollasummapeliä. Ei ole siis asetettavissa yksikäsitteisiä raja-arvoja, millä lämpötilavähetteen ja kosteuden arvoilla saadaan aikaan ukkospilviä. Edes näiden kahden tarkasteleminen yhdessä ei riitä, koska kolmas ainesosa jää joka tapauksessa tämän työn ulkopuolelle. Lisäksi valitut suureet jättävät täysin huomiotta 850 hPa:n alapuolella vallitsevan lämpötilajakauman. Käytännössä tämä voi johtaa siihen, että erittäin otollinenkin kosteus-instabiilisuus-yhdistelmä ei voi johtaa esimerkiksi suuren konvektiivisen eston vuoksi ukkoskuurojen kehittymiseen. Kyseisen yhdistelmän tarkastelu kertoo siis enemmänkin siitä, kuinka usein sade- ja ukkoskuuroille otollinen tilanne on ylipäätään olemassa (vaikka CAPE-pajatso jäisikin lopulta tyhjentämättä). Huolimatta työmenetelmän heikkouksista luotausaikasarjoista voi riipiä irti paljon yleissivistävää ja taustoittavaa tietoa Suomen syvän kostean konvektion ilmastosta.
Alla olevassa kuvassa on esitetty päivittäiset suurimmat keskimääräiset 850 ja 500 hPa:n välisen lämpötilavähetteen arvot Suomen kolmelta luotausasemalta. Kuvasta näkyy, että suuret vähetteet ovat todennäköisempiä talvella kuin kesällä. Lisäksi vähetteiden vaihteluväli on talvella kesää suurempi. Keskimäärin pienimmät (eli ukkospilvien kannalta huonoimmat) vähetteet esiintyvät loppukesästä ja alkusyksystä. Jakaumaa selittää suurelta osin lämpötilavähetteiden lämpötilariippuvuus. Talvisissa lämpötiloissa esimerkiksi kostea-adiabaattinen lämpötilavähete on selvästi suurempi kuin kesäisissä lämpötiloissa.
Lämpimissä kesäolosuhteissa neutraali kostea-adiabaattinen 850 ja 500 hPa:n välinen lämpötilavähete on likimain 6-6,5 K/km. Toisin sanoen, tätä lukemaa suuremmat vähetteet ovat suotuisia sade- ja ukkoskuurojen kehitykselle. Kuvasta nähdään, että kuumimman ukkossesongin aikana yksittäisenä päivänä 75% todennäköisyydellä vähete jää 6,5 K/km heikommalle puolelle. Poikkeuksellisen suuren (97,5% prosenttipiste) lämpötilavähetteen raja menee samaan aikaan 7 K/km kohdalla ennätysten yltäessä lähelle 8 K/km:iä.
Näillä numeroilla mitattuna jäämme huimasti jälkeen esimerkiksi Yhdysvaltojen Keskilännen olosuhteista. Meksikon suunnalta saapuvissa keskitroposfäärin ilmamassoissa 8 K/km lämpötilavähetteet ovat siellä enemmänkin sääntö kuin poikkeus. Eroa selittää suurelta osin se, että Suomessa tai Suomen lähialueilla ei ole olemassa laajaa ylänköaluetta, jossa hurja instabiilisuus voisi muodostua ja liukua lopulta pinnan tuntumassa majailevien kosteiden ilmakerrosten ylle.
Ilmastollisesti mielenkiintoinen näkökulma saadaan, kun tarkastellaan instabiilisuuden kesäkuukausien (kesä-elo) aikasarjaa. Alla olevasta kuvasta nähdään, että keskimääräinen lämpötilavähetteiden vuosittain vaihtelu on absoluuttisella tasolla melko pientä. Aikasarjasta on vaikea erottaa merkittäviä trendejä.
Toisen tarkasteltavan ainesosan vuodenkierto on jokseenkin päinvastainen kuin instabiilisuuden. Ei ole mikään yllätys, että pienimmät kosteusmäärät havaitaan keskitalvella. Suurimmillaan kosteuden määrä on keskimäärin heinäkuun loppupuoliskolla ja elokuun ensimmäisellä viikolla. Lisäksi kesäaikaan kosteuden vaihtelu on suurempaa kuin talvella, mitä selittää yksinkertaisesti kylmän ilman huonompi kyky sitoa kosteutta.
Kesän kosteimpaan aikaan tyypillinen vesihöyryn sekoitussuhde on luokkaa 9 g/kg. Poikkeuksellisen korkea kosteusmäärä tähän aikaan vuodesta on noin 12 g/kg, kun ennätyslukemat yltävät lähes 16 g/kg:aan. Itse olen pitänyt jonkinlaisena merkittävänä tilanteen peukalosääntönä 10 g/kg:aa. Luotausaineisto osoittaa, että näitä lukemia voidaan Suomessa saavuttaa vapusta aina syyskuun loppuun asti. 12 g/kg on puolestaan mahdollisuuksien rajoissa kesä-elokuun ajan.
Jos verrataan kosteusjakaumaa ukkosen esiintymiseen Suomessa (ei kuvaa), huomataan välittömästi, että suurimmat vuorokautiset salamamäärät ja suurimmat kosteusmäärät löytävät melko tarkalleen toisensa. Tästä voisi yksinkertaistaen päätellä, että ukkospilvet pomppivat Suomessa taivaalle ensisijaisesti kosteuden pillin mukaan. Ukkoskauden laidoilla olevien kuukausien (touko- ja syyskuu) aikana kosteusolosuhteet ovat likimain samat, mutta salamointi on hieman yleisempää toukokuussa. Tässä osaselitys voi olla keskimäärin parempi instabiilisuus alkukesän aikana. Myös tämän tutkimuksen ulkopuolelle jäänyt ainesosa (laukaiseva tekijä) saattaa selittää eroa.
Mikäli kosteudella on instabiilisuutta hallitsevampi rooli ilmastossamme, on erityisen kiinnostavaa tarkastella, kuinka kesän keskimääräiset kosteusolot ovat vaihdelleet viime vuosikymmeninä. Alla olevasta aikasarjasta nähdään, että 2000-luvulla on ollut useita varsin kosteita kesiä. Tätä ennen jakaumassa on instabiilisuuden tavoin pieni aallonpohja. Vielä aiemmin eli 60- tai 70-luvuilla kosteat kesät olivat myös melko yleisiä olettaen, että tämän aikaisiin kosteusmittauksiin voi luottaa. Kokonaisuutena tästäkään aikasarjasta on vaikea löytää selvää trendiä. Sen sijaan yhteys voimakkaisiin ukkoskesiin on selvempi kuin lämpötilavähetteellä. Aktiiviset ukkoskesät 1972, 1988, 2003 ja 2010 nousevat aikasarjasta esiin. Kesä 1972 on koko aikasarjan kostein, mitä seuraa hyvänä kakkosena kesä 2010. Salamamäärien ja alatroposfäärin kosteuden välinen korrelaatio ei silti ole kaksinen. Tarkastelin testimielessä heinäkuita ja sain heinäkuiden salamamäärien ja kosteuksien väliseksi korrelaatioksi olemattomat 0,38. Huonoa korrelaatiota selittää tunnettu tosiasia, että kokonaissalamäärissä yksittäiset päivät saavat usein erittäin suuren painoarvon. Niinpä pari runsassalamaista kosteaa päivää muuten kuivan kuukauden aikana nakertaa kuukausitason korrelaatiota tehokkaasti.
Myös tuuliväänteen jakauma on jokseenkin odotetunlainen. Talviajan voimakkaampi barokliinisyys (eli horisontaaliset lämpötilaerot) johtaa luonnollisesti voimakkaampiin tuuliin etenkin vapaassa ilmakehässä ja sitä kautta voimakkaampaan tuuliväänteeseen. Jakauma käyttäytyy pitkälti lämpötilavähetteen tavoin, jolloin suurimmat lukemat ja vaihteluväli havaitaan talvella. Pienimmät lukemat ja vaihteluväli osuvat puolestaan hyvin lähelle kiivainta ukkossesonkia. Tällöin tyypillinen päivittäinen tuuliväänteen maksimiarvo on noin 15 m/s, eivätkä 20-30 m/s lukematkaan ole kovin harvinaisia. Vuosittaisessa aikasarjassa kesäkausien keskimääräinen tuuliväänne on reilut 10 m/s. Lisäksi aikasarjassa nähdään hyvin heikosti laskeva suuntaus.
Ukkostilanteita ajatellen jo keskimääräinenkin tuuliväänteen lukema 15 m/s olisi kovaa valuuttaa eli tuuliväänteestä ei pitäisi meidän leveysasteilla olla pulaa. Asia ei kuitenkaan ole aivan näin yksinkertainen. Käytännössä voimakkaan tuuliväänteen alueet pyrkivät rajoittumaan fysiikan lakien ahdistamina pintarintamien kylmille puolille, jotka eivät taas ole tyypillisiä runsaan alatroposfäärin kosteuden alueita. Eli toisin sanoen runsas kosteus ja voimakas tuuliväänne kohtaavat perin harvoin. Tämä järkeily oli yksi syy siihen, miksi en voinut jättää kuvaajien piirtämistä tähän. Seuraava blogimerkintä kertookin lisää siitä, kuinka usein otolliset ainesosat löytävät toisensa.
Tämänkertaisessa pöytälaatikkotutkimuksessa tarkastelin 45-50 vuoden pituisia ilmakehäluotausaikasarjoja Suomen kolmelta luotausasemalta. Tutkimuksen ensimmäisessä osassa tarkastelin erikseen instabiilisuuden (tässä 850 ja 500 hPa:n välinen lämpötilavähete), alatroposfäärin kosteuden (tässä alimman 500 metrin ilmakerroksen vesihöyryn sekoitussuhde) ja paksun kerroksen tuuliväänteen (tässä pinnan ja 500 hPa:n välinen tuuliväänne) esiintymistä vuoden eri aikoina sekä 50 vuoden aikajaksolla.
Merkittävimmät tulokset olivat seuraavanlaisia:
· Instabiilisuus ja sen vaihtelu on suurinta talvikaudella. Pienimmät lämpötilavähetteen arvot havaitaan juuri vilkkaimman ukkossesongin aikana. Tällöin 7 K/km on poikkeuksellisen suuri lämpötilavähetelukema.
· Alatroposfäärin kosteus ja sen vaihtelu on suurinta ukkosten esiintymishuipun aikoihin heinäkuussa sekä elokuun alussa. Tällöin keskimääräinen vesihöyryn sekoitussuhde on 9 g/kg ja poikkeuksellisen korkean lukeman suuruus 12 g/kg.
· Paksun kerroksen tuuliväänne käyttäytyy instabiilisuuden tavoin eli on minimissään ukkossesongin aikana. Tuolloinkin keskimääräinen tuuliväänne on kuitenkin luokkaa 15 m/s, mikä on riittävä lukema vaarallisten ukkospilvien muodostumiselle.
· 50 vuoden aikasarjoissa ei näy selviä kesäkuukausien trendejä tutkituissa parametreissa.
· Instabiilisuuden ja kosteuden yhteys havaittuihin salamamääriin on varsin heikko. Jälkimmäisen kohdalla korrelaatio on vahvempi mutta silti alhainen.
· Kosteuden vuodenaikaisjakauma on vahvasti yhteydessä ukkosaktiivisuuden kanssa, mikä antaa vihiä sen instabiilisuutta hallitsevammasta roolista Suomen ilmastossa.
· Ainesosien ja osatekijöiden tarkastelu toisistaan irrallisina ei kerro mitään siitä, kuinka yleisiä otolliset ainesosien syvälle kostealle (ja vaaralliselle) konvektiolle otolliset yhdistelmät ovat. Kokemuksesta tiedetään, että voimakas tuuliväänne ja suuri alatroposfäärin kosteus esiintyvät usein eri alueilla.
Taustaa
Kevään mittaan olen raapustanut hiljalleen pöytälaatikkoon uutta pientä tutkielmaa. Tällä kertaa syvennyin Suomen salamatilastoihin ja sitä kautta rajuimpien ukkospäivien meteorologisiin taustoihin. Jokaisella ammatilais- ja amatöörimeteorologilla lienee oma käsityksensä siitä, minkälainen suursäätila tuo mukanaan ikimuistettavimmat ukkoset. Usein kuulee puhuttavan, että ”ruuti kuivuu”, kun matalapaine puikahtaa Suomen lounais- tai eteläpuolelle. Tällöin avautuu väylä mantereiselle helleilmamassalle kaakon suunnalta. Raotan esirippua jo tässä vaiheessa sen verran, että tämä ei ehkä olekaan täysin optimaali kuvio rajujen ukkosten kannalta.
Alla yritän antaa vastauksia seuraaviin kysymyksiin:
Tietolähteet
Tutkimuksen pohjamateriaalina toimivat Ilmatieteen laitoksen vuorokautiset Suomen salamapaikannustiedot (kiitokset Antille jälleen kerran) vuosilta 2001-2006. Aineisto suodatettiin siten, että mukaan otettiin vain päivät, jolloin vuorokaudessa esiintyi vähintään 5 000 maasalamaa. Tämän toimenpiteen jälkeen jäljelle jäi 41 päivää. Seuraavaksi joukosta poistettiin usean vuorokauden mittaisten salamaepisodien ensimmäistä päivää seuraavat vuorokaudet (eli huomioitiin vain jakson ensimmäinen päivä). Toimenpide tehtiin siksi, etteivät pitkien salamaepisodien vaikutus esimerkiksi vuosilta 2001 ja 2003 korostuisi liikaa. Lopulta jäljelle jäi 27 päivää, ja näille päiville laskettiin NCEPin uusanalyysitiedoista useita keskiarvo- ja anomaliakenttiä.
Syvän konvektion ainesosat ja tarkasteltavat kentät
Syvän kostean konvektion ainesosat ovat kosteus (alimmissa kilometreissä), instabiilisuus (lämpötilan riittävä lasku ylöspäin mentäessä) sekä nosto (~kehityksen käynnistävä tekijä). Valitaan tämän pohjalta tarkasteltaviksi parametreiksi sadevesisisältö, lämpötilat reilun 5 ja 1 kilometrin korkeudessa sekä 300 hPa:n painepinnan korkeus. Kolmanteen ainesosaan ei uusanalyysitiedoista löydy suoraa vastausta, mutta 300 hPa:n (noin 10 km) tason tapahtumat ovat usein myötävaikuttamassa ukkospilville otollisten olosuhteiden muovautumisessa. Edellä mainittujen lisäksi tarkastellaan vielä merenpintapaineen jakaumia sekä tuulen nopeutta reilun 5 kilometrin korkeudella.
”Nosto”
Alla näkyy kymmenen vuorokauden mittainen animaatio, joka kertoo keskimääräisen 300 hPa:n korkeuskentän 0-10 vrk ennen ukkostilannetta. Keskimääräiskentästä nähdään, kuinka yläsola alkaa lähestyä Suomea Grönlannin tienoilta. Juuri ennen ukkospäivää sola terävöityy Brittein saarten paikkeilla ja puskee yläselänteen Suomen yltä itään. Solan ja selänteen liikkeet näkyvät kauniisti myös anomaliakentissä (ei kuvaa). Niissä esiintyy myös muita ”oikkuja”, mutta tämä on toki täysin normaali kuvio pallon ympäri ulottuvassa ”aaltojunassa”. Solan liike Grönlannista ei ole aivan tasaista, vaan vaikuttaisi ikään kuin solanpoikasia liikkuisi itään useita ennen lopullisen montun syntyä. Tämä saattaa olla oikku pienestä otannasta tai voi jopa kuvata sitä, että yläsolan porautuminen etelään voi olla usean pienemmän solan aikaansaannosta (tämä on kuitenkin pelkkää arvailua).
Keskimääräinen 300 hPa:n korkeus 0-10 vuorokautta ennen ukkospäivää.
Instabiilisuus
Alla on keskimääräinen 500 ja 850 hPa:n (noin 5,5 ja 1,5 kilometriä) lämpötilan kehitys vuorokausille 0-5. Ukkospilvien kannalta suotuisaa olisi kehitys, jossa näiden kahden pinnan välinen lämpötilaero kasvaisi (olettaen, ettei painepintojen korkeuksien muutos eliminoi tätä vaikutusta). Ylemmästä animaatiosta nähdään, että Suomen alueella 500 hPa:n lämpötilan vaihtelut ovat varsin marginaalisia. Juuri ennen ukkospäivää lämpötila lähtee yläselänteen myötä nousuun, mutta putoaa ukkospäiväksi yläsolan lähestyessä takaisin lähes lähtötasolleen. Alemmasta animaatiosta nähdään, että 850 hPa:ssa muutokset ovat paljon korostuneempia. Lämpötila kiipeää tasaiseen tahtiin noin 2 astetta. Animaatioiden perusteella on siis varsin ilmeistä, että instabiilisuus kasvaa ukkospäivän lähestyessä ja erityisesti viimeisen 24 tunnin aikana. Kannattaa myös huomata, että lämpimän ilman advektio aiheuttaa heikkoa nousevaa liikettä, jolla voi olla samantapainen vaikutus ukkospilvien elinympäristöön kuin edellä 300 hPa:n tarkastelussa on mainittu.
Keskimääräinen 500 hPa:n lämpötila 0-5 vuorokautta ennen ukkospäivää.
Keskimääräinen 850 hPa:n lämpötila 0-5 vuorokautta ennen ukkospäivää.
Kosteus
Alla olevassa animaatiossa näkyy keskimääräinen ilmakehän sadevesisisältö 0-5 vuorokautta ennen ukkospäivää. Tämän suureen käyttö on siinä mielessä perusteltua, että leijonanosa ilmakehän kosteudesta on alimmissa kilometreissä. Niinpä myös pinnanläheisen kosteuden muutokset vaikuttavat voimakkaasti sadevesisisältöön. Animaatiosta voi huomata, kuinka kosteus määrät huipentuvat ukkospäivään. Lukuarvot muuttuvat reilusta 20 millimetristä reiluun 25 milliin. Animaatio antaa myös mielikuvan, että kosteus saapuisi meille etelän tai eteläkaakon suunnalta. Tämän varmistamiseksi pitäisi kuitenkin tehdä säätilanteille syvempää trajektoritarkastelua.
Keskimääräinen ilmakehän sadevesisisältö (mm) 0-5 vuorokautta ennen ukkospäivää.
Merenpintapaine ja ylätuulet
Alla olevassa keskimääräistä vuorokausien 0-10 merenpintapainetta kuvaavassa animaatiossa näkyy, kuinka suuressa osaa Eurooppaa on aluksi korkeapaine. Se luikahtaa kuitenkin vähitellen itään, kun Grönlannin tienoilta jyrää matalapaine aina Skandinaviaan saakka. Niinpä myös ilmavirtaukset pinnan lähellä kääntyvät etelän puolelle. 500 hPa:n korkeudella keskimääräiset virtaukset (ei kuvaa) ovat vielä 5 vrk ennen ukkostilannetta erittäin heikkoja. Lounaisvirtaukset voimistuvat vähitellen ja ovat ukkospäivänä keskimäärin 8-9 m/s. Tämä tarkoittaisi varsin vaatimatonta paksun kerroksen tuuliväännettä, mutta täytyy muistaa, että kyseessä on lähes 30 tapauksen keskiarvo.
Keskimääräinen merenpintapaine (hPa) 0-10 vuorokautta ennen ukkospäivää.
Sudenkuoppia ja käsien heiluttelua
Tästä minitutkimuksesta ei voi vetää kovin pitkälle meneviä johtopäätöksiä Suomen voimakkaiden ukkosten synoptisesta klimatologiasta. Ensinnäkin tutkimusjakso on varsin lyhyt, minkä seurauksena ukkospäiväotanta on varsin pieni. Lisäksi filtterinä käytettiin ainoastaan salamamääriä. Yleisesti tunnettuahan on, että yli 5000 maapaukun päiviä voi esiintyä melko erilaisten suursäätilojen ja dynamiikan vallitessa. Toisaalta tämä ei muuta syvän kostean konvektion ainesosalistaa. Ainoastaan tapa, jolla reseptin ainekset putoavat kulhoon voi vaihdella. Tämä taas on omiaan sotkemaan ja loiventamaan keskiarvokenttiä. Täyttä sekasotkua nämä tavat eivät kuitenkaan muodosta, koska keskiarvoanimaatiot ovat varsin kauniita katsella. Erityisen tärkeää on muistaa, että tässä esitetyt tulokset eivät edusta rankkasateisiin, trombeihin, suuriin rakeisiin tai syöksyvirtauksiin liittyvää synoptista klimatologiaa.
Johtopäätökset
Edellä esitetyistä tuloksista voidaan esittää seuraavanlainen varovainen yhteenveto:
Näiden tulosten valossa vaikuttaisi, ettei kunnon salamapäivä Suomessa välttämättä vaadi matalapaineen kuroutumista Suomen lounais- tai eteläpuolelle ja näin ollen virtausten kääntymistä kaakkoon. ”Häiriön” siemen näyttäisi lähtevän itämään varsin kaukana Suomesta ja se saapuu meille lännestä avaten hetkeksi lämpö- ja kosteuskanavan etelästä samalla, kun ylempänä ilma on kylmenemässä. On täysin selvää, että kunnon myräköitä saapuu meille kaakosta ja jopa idästä. Näiden tulosten valossa lienee kuitenkin aiheellista kysyä, onko kaakon rooli meillä turhaan paisuteltu? Aiheellista on myös kysyä, ketä tämä 45 asteen ero suunnassa oikeasti liikauttaa…
Taustaa
Tällä kertaa nostin näppiksen pöydälle tavoitteena tehdä pieni pöytälaatikkotutkimus. Viime joulukuisten Pohjois-Lapin myrskyjen ja muutamien vanhempien samankaltaisten tapausten motivoimana päätin selvittää Suomen maa-alueiden hurjimpien tuulien meteorologista taustaa. Suomessahan myrskyä (yli 21 m/s) ei ole mitattu keskituulena kuin merialueilla, tuntureilla sekä Pohjois-Lapin "tasamaalla". Joulukuussa 2007 Kevon mittausasemalla luoteistuuli hönkäisi mittariin järkyttävät 28 m/s puuskien kivutessa lähes 40 m/s:iin. Lukemat olivat suurempia kuin millään merisääasemalla mitattiin koko vuonna.
Tässä muutamia kysymyksiä, joihin olen yrittänyt kaivaa vastaukset Utsjoki-Kevon aseman mittausten perusteella:
Tietolähteet
Työ nytkähti liikkeelle tekemällä havaintotietokantaan haku Kevon tuulimittauksista vuosilta 1962-2007. Mukaan otettiin vain havaintohetkellä mitattu keskituuli (ei siis kolmen tunnin jakson maksimikeskituuli), jos se oli vähintään 17 m/s. Sen jälkeen aineistosta laskettiin muutamia yksinkertaisia jakaumia. Seuraava vaihe oli poimia talteen voimakkaan tuulen päivämäärät ja laskea jenkkiläisen NCEPin uusanalyysitiedoista tilanteille keskimääräiset suuren mittakaavan sääolosuhteet.
"Kevo-myrskyjen" esiintyminen
Sitten itse tuloksiin. Koko aineistosta löytyi 104 mittausta, joissa havaintohetken keskituuli ylitti 17 m/s. Mittaukset eroteltiin omiksi tapauksikseen, joita kertyi 74 kappaletta. Niinpä todennäköisyys, että yksittäinen havainto ylittää 17 m/s rajan on Kevolla ainoastaan 0,0008%. Tämä tarkoittaa, että yhden vuoden aikana rajan ylittäviä mittauksia on tehty keskimäärin 2,3 kappaletta. Kyseessä on siis vuosittain toistuva tuulitapahtuma. Kannattaa huomioida, että eteläisessä Suomessa tuulennopeus 17 m/s (puuskat 25+ m/s) aiheuttaa todella pahoja vahinkoja, kuten nähtiin esimerkiksi Janika-myrskyssä 15.11.2001.
Tuulennopeudet ja kuukausijakauma
Jos tarkastellaan tuulennopeuksien frekvenssijakaumaa, nähdään ennalta odotettu äkisti laskeva tapausten määrä suuria nopeuksia kohti mentäessä. Tapausten kuukausijakaumakaan ei juuri yllätä, koska maksimi osuu talvikuukausille. Säähäiriöt ovat talvella voimakkaimpia ja niinpä on yleisesti tunnettu fakta, että näillä leveyksillä puhaltaa rajuimmin talvella. Merialueiden myrskypäivien kuukausijakaumaan verrattuna havaitaan kuitenkin, että "Kevo-myrskyjen" sesonki ajoittuu lähemmäksi kevättä. Kuten kuva osoittaa, tapauksia on ollut eniten helmikuussa. Tämä saattaa liittyä tilanteelle otollisiin suuren mittakaavan säätilanteisiin, joista on kerrottu enemmän alla.
Tuulensuunnat
Tilanteista tehty tuuliruusu sen sijaan antaa todella ronskin signaalin. Peräti 92% tapauksista sattuu tuulensuunnille 285-345 astetta (länsiluode-pohjoisluode) eikä suunnilla 15-225 astetta (pohjoiskoillinen-lounas) ole yhtään ainoaa tapausta. Yleisesti tunnettua on myös se, että "yleinen" tuuliruusu painottuu meidän leveysasteilla etelän ja lounaan välille. Nämä faktat yhdessä antavat siis vihiä, että ainakin Kevolla voimakkaiden tuulien taustalla saattavat olla paikallisolosuhteet.
Keskimääräinen suursäätila
Lisää mielenkiintoisia tuloksia saadaan, kun syötetään "Kevo-myrskyjen" päivämäärät numeerisessa uusanalyysitiedossa keskiarvoistettaviksi. Alla on esitetty animaatioita, jotka kuvaavat keskimääräisiä virtausoloja noin 5 km korkeudessa sekä maanpinnalla. Lisäksi molemmilta korkeuksilta on esitetty poikkeamat ilmastollisesta keskiarvosta. Animaatiot alkavat 5 vuorokautta ennen tilannetta valinneesta suursäätilasta ja loppuvat myrskypäivään.
Ensimmäisestä animaatiosta nähdään, että noin 5 kilometrin korkeudella (500 hPa) on vahva (ylä)korkeapaineenselänne, joka vahvistuu myrskypäivän lähestyessä kohti länttä ja luodetta. Samalla yläsola kaivautuu kohti etelää Suomen itäpuolelle. Meteorologin kielellä ilmaistuna, animaatiossa näyttäisi tapahtuvan epäjatkuva retrogressio, jossa vahva yläselänne pakittaa länteen. Yläselänne tulee kauniisti esiin myös poikkeama-animaatiossa, jossa on vahva positiivinen poikkeama Fennoskandiassa ja sen länsipuolella. Vastaavasti negatiiviset poikkeamat ovat kauempana Atlantilla sekä toisaalta Venäjän pohjoisosassa. Myös tästä nähdään, kuinka positiivisen poikkeaman painopiste hivuttautuu kohti länttä ja samalla negatiivinen poikkeama vaeltaa kohti Kuolan niemimaata.
Jos tehdään vastaava tarkastelu merenpintaan redukoidulle ilmanpaineelle, nähdään odotusten mukaisesti samoja tapahtumia. Keskimääräisolosuhteita kuvaavassa animaatiossa korkeapaine ulottuu aluksi kaukaa Aasiasta Keski-Eurooppaan, mutta tapahtumapäivän lähestyessä korkeapaine pullistaa selänteen kohti luodetta. Samalla matalapaine valahtaa Jäämereltä Suomen itäpuolitse etelään. Tämä asetelma on toki arvattavissa jo edellä esitetyn tuuliruusun perusteellakin. Poikkeama-animaatio osoittaa vahvan positiivisen ilmanpainepoikkeaman siirtyvän hiljalleen länteen ja luoteeseen samalla kuin negatiivinen poikkeama liikkuu Jäämereltä etelään. Huomionarvoista on, että positiivinen poikkeama on aluksi selvästi vahvempi kuin negatiivinen. Samaa koskee myös tilannetta 5 km korkeudella.
Asema ja sen ympäristö
Ennen loppuyhteenvedon tekemistä on syytä kurkata, minkälaisessa tuulitunnelissa Kevon mittarit oikein makaavat. Ilmatieteen laitoksen virallisessa asemakuvauksessa todetaan muun muassa seuraavaa: "Asema sijaitsee pohjois-etelä -suuntaisen Utsjoen-Kevojoen kanjonissa, koillisrinteen tasanteella. Pohjoisen suunnalla (n. 360 astetta) joki jatkuu samansuuntaisena n. 15 km, etelän suunnalla (n. 160 astetta) vain n. 4 km. Muissa ilmansuunnissa on tuntureita tai vaaroja, joista korkeimmat 350-400 m mpy. Kevojärvi ympäröi kuitenkin 100-200 m päässä asemasta n. 1 km matkalta muissa ilmansuunnissa paitsi lounaassa (sektori 180-250 astetta)." Saman karttamuodossa voi todeta vaikkapa Kansalaisen Karttapaikan tiedoista.
Mitä opimme tästä?
Yllä olevan perusteella pystytään päättelemään tai spekuloimaan Kevon hurjista tuulista ainakin seuraavaa:
Lopuksi täytyy korostaa, että tämän pöytälaatikkotutkimuksen tulokset eivät ole yleistettävissä muualle Pohjois-Lappiin saati Keski- tai Etelä-Lappiin. Yleisten linjojen vetäminen vaatisi useamman aseman mittausten tutkimista. Kokemus Pohjois-Lapin myrskyistä on kuitenkin näyttänyt, että samanaikaisesti Kevon kanssa myös muilla alueen asemilla mitataan eteläsuomalaisittain hurjia tuulia. Toistaiseksi jääkin ilmaan kysymys, kuinka vääristynyt mm. Kevon tuuliruusu todella on vai onko se totuus myös muualla Suomen "tundralla".
Loppukommentti
Mikäli joku jaksoi lueskella tarinan loppuun asti, olisi mukava kuulla kommentteja tämän pikkututkielman tuloksista tai yleensä tämäntapaisten kirjoitusten julkaisemisesta. Allekirjoittaneen kannalta työ oli todellinen piristysruiske haudanvakavaan tieteentekoon ja aion ehdottomasti jatkaa samalla linjalla, jos vaan aikaa suinkin löytyy. Tätä tehdessä tuli jo ajatuksia uusista aiheista ja otan niitä mieluusti vastaan myös tämän blogin kautta.